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Abstract

The formation of a transverse shear localization (shear hinge) in a beam element made from a ductile material
and subjected to transverse dynamic loads is studied in the present paper. Dimensional analysis and a ®nite-element

simulation are used to describe the formation and structure of a transverse shear hinge. It is shown that the beam
response under a transverse dynamic load is determined by two dimensionless parameters, represented by the
relative values of loading velocity and loading time. When the actual impact or impulsive loading velocity is of the

same order as the characteristic loading velocity, then the concept of a shear hinge is relevant. In this case, a quasi-
static method of an analysis can be used to obtain the length of a shear hinge, and the shear strain within the shear
hinge may be determined from the shear sliding displacement obtained using a rigid, perfectly plastic analysis. Other

response modes and strain rate e�ects are also discussed. It transpires that the current conclusions are also
applicable to circular plates and cylindrical shells. 7 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Shear localization; Dynamic loading; Dynamic response of structural elements

1. Introduction

It is well-known that transverse shear becomes an increasingly important factor in the dynamic
response and failure of transversely loaded structural elements as the dynamic loading rate and intensity
increases (Symonds, 1968; Jones, 1989a, b, c; Jones and Shen, 1993). The concept of a `shear hinge (or
shear sliding)' was employed in these studies to investigate the ®rst stage of the response in those
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structural elements for which transverse shear deformation dominates the bending and membrane
deformations. Usually, it is assumed that a shear hinge has an in®nitesimal length for a rigid, perfectly
plastic idealisation. This assumption emerges from Symonds' (1968) conclusion that a transverse shear
hinge is always stationary in a rigid, perfectly plastic beam, which implies that transverse shear will be
localized within the initially formed zone when the in¯uence of material strain hardening is neglected.
Symonds' conclusion, which was based on a particular square yield surface, has been extended to
arbitrary regular and singular yield conditions, and has been shown by Li (2000) to be valid for
symmetrically loaded circular plates and cylindrical shells.

Nomenclature

c 2 N0L
2/M0R

cp transverse plastic shear wave speed given by Eq. (1)
e half length of a plastic shear hinge
f yield function
m M/M0

n N/N0

q Q/Q0

sij deviatoric stress components de®ned by Eq. (15)
t time
w, W transverse displacements
x spatial coordinate
B beam width
D, p coe�cients in Cowper±Symonds relationship in Eq. (23)
Eh linear hardening modulus in a uniaxial tensile test
Et linear hardening modulus in a pure shear test
H beam thickness
L half length of beam or cylindrical shell
M, Q, N bending moment, transverse shear force and circumferential membrane force (in

cylindrical shell)
M0, Q0, N0 fully plastic bending moment, transverse shear force and circumferential membrane

force capacities of a cross-section
R radius of a circular plate
T loading time
T� e/cp, characteristic response time
V velocity
g transverse engineering shear strain
ee, _ee equivalent strain and strain rate
Zv, Zt dimensionless parameters de®ned in Eqs. (25a and b)
n Q0L/2M0 for beam and cylindrical shell, or Q0R/2M0 for circular plate, also used as

Poisson's ratio when declared
x x/L
r material density
s0 uniaxial tensile yield stress
se von-Mises equivalent stress
t transverse shear stress
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No attempt was made to explore the structure of a shear hinge in Symonds' (1968) original work and
the subsequent studies on structural elements. These studies concentrated mainly on global structural
responses, where the concept of shear and bending hinges can give a reasonable prediction of the energy
consumed without knowing the exact dimensions of shear and bending hinges, and the actual
deformation process within them. In fact, shear and bending hinges are in®nitesimally long in dynamic
plastic analyses using a rigid, perfectly plastic material. The energy consumed within a plastic hinge may
be estimated from the relative transverse displacement across the shear hinge, or the relative rotation
angle across a bending hinge, respectively. However, if the results from rigid, perfectly plastic analyses
are used to predict the initiation of local failures or local ¯ow instabilities, then an estimation of the
sizes of shear and bending hinges are required in order to obtain the deformation details within these
hinges.

Usually, combined bending and shearing responses develop ®rst in a structural element under
transverse dynamic loads (Jones, 1985, 1989a). This is followed by a combined bending and membrane
response and, ®nally, membrane behaviour dominates if no material failure has occurred during the
response. However, one of several failure modes might initiate at any stage during the response, as
observed by Menkes and Opat (1973) for beams, which have been studied theoretically by Jones (1976,
1989c). The present investigation focuses on the early time response period when shearing and bending
e�ects dominate and sometimes lead to a transverse shear failure or adiabatic shear instability
depending on the loading rate and material properties. A study of the transition between these two
di�erent shear failures has been presented by Li and Jones (1999).

A transverse shear localization might develop at the site of the impact loading and at hard point
support interfaces, and is formed by the propagation of the transverse disturbance away from these
interfaces. The propagation of transverse disturbances in one or two-dimensional structural elements,
such as beams, plates and shells, is complicated due to the existence of free surfaces on the top and
bottom surfaces of a structural element. However, for low loading rates, the inertia or wave propagation
e�ect may be neglected. In this case, the formation of a shear localization might be treated as a quasi-
static problem, as studied by Wen et al. (1995a) and Wen and Jones (1996) for a beam and a circular
plate, respectively. These methods will be re-examined in section 2 of the present paper with a more
solid physical basis and will be extended to cylindrical shells. Several investigations have used the
simpli®cation of a quasi-static behaviour to determine the size of a shear hinge in order to study
material failure, and observed encouraging results when compared with experimental results (Wen et al.,
1995a±c; Jones et al., 1997).

When the loading rate and intensity are high, material failure might occur while the transverse
disturbance is still propagating across a structure. The actual strain and strain rate cannot be
determined from the shear hinge length predicted by a quasi-static analysis and wave propagation
theory is necessary to provide a realistic prediction. Wang and Jones (1996) proposed a transverse shear
propagation model within the scope of rigid-plastic analyses when retaining the in¯uence of material
strain hardening. It was found that the transverse shear disturbance will propagate with a constant
velocity

cp �
������
Et

r

s
, �1�

where Et is the linear hardening modulus in a pure shear test and r is the material density. Clearly, the
in¯uence of the top and bottom free surfaces of structural elements on the propagation of the transverse
shear disturbance are neglected, which is, nevertheless, important for the actual shear wave propagation
in a beam, as shown in section 3. A possible relationship between the quasi-static method and a wave
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propagation analysis is studied numerically in section 3 from this view-point, and, thus, a description of
transverse shear localization in structural elements is presented, which might be used in material failure
and ¯ow instability analyses.

2. Quasi-static analyses

2.1. Introduction

A shear dominant zone may develop in a beam section when subjected to a pair of opposite
displacements at two sides of the section,

W�x � L� � ÿW�x � ÿL� �2�
as shown in Fig. 1 for the quasi-static case. A necessary condition for the appearance of such a shear
dominant zone is that the length of the beam section is su�ciently short. It is expected that a shear
dominant deformation mode will become a bending dominant deformation mode with an increase of the
beam section length. The critical value of this length for the transition between these two deformation
modes de®nes the shear hinge length in a quasi-static analysis, which will be studied in sections 2.3±2.5
for beams, plates and cylindrical shells, respectively.

The beam problem in Fig. 1 can be idealized as a static plane strain problem, and the validity of the
above postulate is examined by using the ®nite-element code ABAQUS. Four node bi-linear plane strain
elements are used for an aluminum-alloy 6061-T6 beam. The material is modelled by an elastic-plastic
model with a uniaxial tensile yield stress s0=286.8 MPa and strain hardening modulus Eh=542.6 MPa.
Two typical results from the ABAQUS analyses are presented in Fig. 2(a) and (b) for two di�erent
values of L/H, where L and H are the half length and the thickness of a beam section, respectively. It is
evident that the deformation mode corresponding to a large value of L/H is a bending dominant
deformation mode (Fig. 2 (a)) and the one corresponding to a small value of L/H is a shear dominant
deformation mode (Fig. 2(b)). Therefore, it is assumed that there exists a transition point from a
shearing dominant mode to a bending dominant mode with an increase of L/H. This transition
condition is used to estimate the shear hinge length in a beam.

Fig. 1. Boundary condition for the beam problem.
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2.2. Basic equations

A generalized yield condition is described by

f �q, m, . . .� � 0 �3�
where, q=Q/Q0 and m=M/M0, when Q0, and M0 are the static fully plastic transverse shear force and
bending moment capacities of the cross-section, respectively. The normality rule of plasticity requires

dg � dl
@ f

@q
and dk � dl

@f

@m
, �4a,b�

where dg and dk are the increments of transverse shear strain and bending curvature, respectively. Eq.
(4a,b) are associated with the transverse shear force and bending moment through the energy dissipation
relations. Therefore, the generalized stresses on a yield surface satisfy the following requirements

Fig. 2. Static simulation of the plane strain problem in Fig. 1 for 6061-T6 aluminum alloy in Table 1 without considering strain

rate e�ect, (a) bending mode, L/H=0.8; (b) shearing mode, L/H=0.3, where H=9.52 mm.
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���� @f@m
����� ���� @ f@q

����r0 �5a�

for a bending dominant hinge and���� @f@q
����� ���� @f@m

����r0 �5b�

for a shear dominant hinge.
For many yield conditions relating q and m, Eqs. (5a) and (5b) would require

kmk11 �6a�
for a bending dominant hinge and

kqk11 �6b�
for a shear dominated hinge.

In particular, an independent yield condition between q and m, i.e. vqv=1 and vmv R 1, or vmv=1 and
vqv R 1, described as a square in q-m plane (Gomes de Oliveira and Jones, 1978; Li and Jones, 1995a), is
used to simplify the following analyses and to provide an estimate for a shear dominant hinge length. In
this case, Fig. 2 (a) and (b) are two possible responses according to Eq. (2) associated with Eqs. (6a)
and (6b), respectively. The maximum length for the occurrence of a shear dominant deformation is now
determined using a quasi-static method of analysis for three di�erent structural elements.

2.3. Beam

The static equilibrium equations for a beam may be written in the form (Li and Jones, 1995a)

@Q

@x
� 0 �7a�

and

Q� @M
@x
� 0: �7b�

If a shear mode is initiated in a beam then Eqs. (5b) and (6b) must be satis®ed within the length of a
shear dominant zone (shear hinge), D=2e. Eqs. (6b) and (7a) require vQv 1Q0 within the shear hinge, so
that integrating Eq. (7b) from x=ÿe to x=e gives

e � ÿM�x � e� ÿM�x � ÿe�
2Q0

: �8�

The maximum value of e is determined when the bending mode is just initiated at the two ends (x=2
e ), i.e. M(x=e )=ÿM(x=ÿe )=ÿM0, which terminate the further extension of shear deformations, and,
thus, de®ne the length of a shear hinge,

e � M0

Q0
�

���
3
p

4
H � 0:433H �9�

for a beam with a solid rectangular cross-section. A similar method was used by Wen et al. (1995a), in
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which M(x = e)=0 was assumed giving a value of e which is one-half of the present value, i.e. e =
0.216H. An ABAQUS simulation of the idealized shear dominant zone in Fig. 2 (b) has shown that a
shear dominant behaviour will occur at L = 0.3H. The value of e for a circular plate in section 3.2 is
0.325ÿ0.342H, approximately, which is larger than Wen et al.'s (1995a) value for a beam, but smaller
than the value given by Eq. (9). Because there are more restraints in a circular plate than in a beam, the
value of e for a circular plate should be smaller than the value for a beam according to physical
intuition. This evidence supports the present prediction, but further veri®cation is necessary.

2.4. Circular plate

The static equilibrium equations for a circular plate are (Li and Jones, 1994)

d�Qr�
dr
� 0 and

dMr

dr
� Mr ÿMy

r
�Q � 0: �10a,b�

Eq. (10a) gives Qr=ÿQ0a if Q=ÿQ0 is ®rst reached at r=a. Therefore, Q(r=a+Dr )=ÿQ0/(1+Dr/a ),
where Dr/a R e/a and e/a0H/a<<1 is required in order to satisfy the plate assumptions. For example, a
may be the radius of a circular plate for a uniform impulsive pressure loading, or the radius of a blunt
projectile for a mass impact problem. Thus, Q1ÿQ0 within the shear hinge.

Under the further assumption that Mr=My in the immediate vicinity of the shear hinge, a static
analysis has been presented by Wen and Jones (1996) to give a shear hinge length

e � 1� ���
3
p

8
H � 0:342H, �11�

where the von-Mises yield condition was used to relate Mr and My. If the Tresca yield condition is used
instead, then a similar procedure gives the shear hinge length

e � 3
���
3
p

16
H � 0:325H: �12�

2.5. Cylindrical shell

The static equilibrium equations for a cylindrical shell are (Li and Jones, 1995b)

dM

dx
�Q � 0 and

dQ

dx
ÿ N

R
� 0, �13a,b�

which may be written in the dimensionless forms

dm

dx
� ÿ2nq and

dq

dx
� c2n

n
, �14a,b�

where m=M/M0, n=N/N0, q=Q/Q0, x=x/L, n=Q0L/2M0 and c 2=N0L
2/M0R.

An independent yield condition relating m, q and n is assumed here. It is evident that a
circumferential strain is always associated with a transverse shear ¯ow, while strains associated with
bending are expected to remain small in a shear hinge. Thus, material yielding only leads to signi®cant
circumferential and shear deformations in a shear hinge. Therefore, an interactive yield condition
between transverse shear and the circumferential membrane force in a shear hinge is su�cient for
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predicting the distributions of shear force within a shear hinge, although the existence of a bending
moment is important for satisfying the equilibrium Eq. (14a).

The stress state in a shear hinge, which may enter the interactive yield condition between q and n, is
characterised by s33=sy and s12=t. Now, the von-Mises equivalent stress is

se �
������������
3

2
sijsij

r
, �15�

where

sij � sij ÿ
�
1

3
skldkl

�
dij,

which leads to (p. 344 in Jones, 1989a)

s2
y � 3t2 � s2

0 �16�
or

n2 � q2 � 1 �17�
when using s0 � t0

���
3
p

, N=syH and Q=tH.
Substituting Eq. (17) into Eq. (14b) gives the dimensionless shear force

q � cos

�
c2

n
x

�
�18�

when using q=1 at x=0. Eqs. (14a) and (18) with the boundary conditions m=ÿ1 at x=e/L and m=
1 at x=ÿe/L predict

sin

�
2
���
3
p e

R

�
� 3

2

H

R
: �19�

Now, e/R<<1 for a cylindrical shell problem, which gives sin�2e ���
3
p
=R�12e

���
3
p
=R, so that, Eq. (19)

simpli®es to

e1
���
3
p

4
H10:433H �20�

which is identical to the shear hinge length of a beam in Eq. (9).

2.6. Remarks

Experimental studies on the dynamic behaviour of beams have shown that the main region of a
transverse shear hinge consists of an anti-symmetrical simple shear ¯ow. A good example of a typical
shear dominant zone is shown in Fig. 12 of Zener (1948). Similar results can also be found in Jones
(1989c) although considerable bending deformations are evident on both sides of the shear hinge. These
anti-symmetrical features of an idealised transverse shear hinge in the dynamic case are similar to the
idealised quasi-static problem in Fig. 1. However, when bending and membrane deformations are
introduced, the problem becomes more complicated, which will not be discussed in the present paper.

It is evident that the response of a beam under transverse quasi-static and dynamic loads is very
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di�erent. In the static case, the bending deformation mode usually dominates over the shear
deformation mode when there are no hard-point restraints near to the loading point1, because the low
loading rate ensures that bending deformations absorb plastic strain energy rather than the shear
deformation mode. However, with a rapidly increasing loading intensity in the dynamic case, the
condition for initiating shear deformation may be satis®ed ®rst at the loading location, which starts to
absorb plastic strain energy and leads to the subsequent propagation of a transverse shear disturbance
into the beam. The shear deformation will be con®ned within a limited distance because bending, and
then membrane, deformations will prevent the further propagation of the shear disturbance. Thus, the
determination of a shear hinge length in the dynamic case is the same as for the quasi-static method
introduced in sections 2.1±2.5 when strain rate and inertia e�ects are neglected, which are, nevertheless,
examined numerically in the following sections. However, this observation does not prevent the
retention of strain rate and inertia e�ects in the equilibrium and constitutive equations when studying
the global responses of these structural elements.

3. Propagation of a transverse shear deformation in a beam

3.1. Description of the problem

The material properties and beam dimensions for the test results reported in Menkes and Opat (1973)
are used in the following discussion.

The simpli®cation of a rigid, perfectly plastic material leads to stationary transverse plastic shearing
according to Symonds (1968). However, when material strain hardening is considered, the transverse
shear disturbance will propagate along a structural element at a constant propagation velocity for a
linear strain hardening beam, as shown by Wang and Jones (1996). This is a ®rst order approximation
since re¯ections of a plane shear wave from the upper and lower free surfaces of a beam are neglected.
Even within the characteristic length of a localized transverse shear zone (shear hinge), wave scattering
is important. In order to understand the propagation of a transverse disturbance in a beam, an idealized
problem described below is studied using a ®nite-element simulation.

Any wave e�ects through the thickness of a structural element are neglected in the following analysis.
It has been shown that a shear hinge has an anti-symmetrical pattern. Thus, the transverse shear
disturbance is applied at the anti-symmetrical plane, and only one-half of the shear hinge is studied. The
transverse displacement, W(t ), is described by

Table 1

Material properties of 6061-T6 aluminum alloy (E, Eh, p and D: ABAQUS (1996b); n: J. Appl. Phys., 72, 429±441 (1992); r, s0:
Jones (1976))

E (GPa) r (kg/m3) s0 (MPa) n Eh (MPa) p D (1/s)

72.4 2686 286.8 0.32 542.6 4.0 6500.0

1 The hard-point restraints may cause the initiation of the shear deformation mode because of a short distance between a pair of

the external opposite forces.
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W�t� �W
t

T
, for 0RtRT and W�t� �W for t > T, �21�

in which T can be adjusted to represent di�erent loading rates. The beam material is elastic±plastic with
a linear strain hardening relationship

se � s0 � Ehee, �22�
where s0 and Eh are the uniaxial tensile yield stress and the hardening modulus given in Table 1. The
in¯uence of material strain rate sensitivity may be included through the Cowper±Symonds relationship
(Jones, 1989a)

_ee � D

�se

ss
e

ÿ 1

� p

, �23�

where _ee is the equivalent plastic strain rate, s s
e is the equivalent static stress, se is the equivalent stress

at a non-zero plastic strain rate and D and p are constants given in Table 1.
Plane strain four-node bi-linear elements (CPE4) in ABAQUS/standard-5.5 are used in the simulation,

as shown in Fig. 3. Direct implicit time integration is used in the dynamic analysis in ABAQUS/
standard and an automatic time step control based on the half-step residual concept is selected in the
simulation. Newton's method was employed for solving the nonlinear equilibrium equations using the
Hilber±Hughes±Taylor operator with an arti®cial damping parameter a=ÿ0.05 and Newmark's formula
were used for the displacement and velocity integration. For more details of the numerical procedure,
the reader may refer to the ABAQUS Theory and User's Manuals, Version 5.5 (1996a).

3.2. Dimensional analysis

A complete group of independent dimensionless variables for the prescribed model are

B

H
,
L

H
, n, p, TD,

V

ce

,
V

cp

,
s0
E
,
W

H
, �24a±i�

where e= 0.433H is one half of the shear hinge length given by Eq. (9). V=W/T is the driving velocity

Fig. 3. Plane strain ®nite element of a beam.
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at one end of the beam. ce � �p E=2�1� n�r� and cp � �p Eh=3r� are the elastic and plastic shear wave
speeds2, respectively. In the following analyses, further postulates are introduced, i.e.

1. Material strain rate e�ects are neglected. Thus, p and TD can be eliminated from the group.
2. The present beam problem may be treated as a plane strain problem because 2.67 R B/H R 5.36 for

the beams tested by Menkes and Opat (1973). Therefore, B/H and n are eliminated from the group.
3. The beam response is dominated by large plastic deformations, i.e. elastic e�ects are neglected in the

analyses. Thus, s0/E and V/ce are removed from the dimensionless groups.
4. L/H is an important factor in the transverse shear response (Jones, 1989a), which is re¯ected in the

parameter n=Q0L/(2M0)=2L/H which governs the initiation of the transverse shear response mode
in a beam with a rectangular cross-section. However, it is likely that the size of the transverse shear
localization zone does not depend on this parameter if L/H>>1.

5. The external work is determined by W/H, which may in¯uence the characteristics of a shear
localization. When the driving velocity is a constant, the dimensionless time T/(e/cp) may be
introduced to represent the external work, equivalently, instead of W/H.

Thus, only two dimensionless parameters are signi®cant for describing a shear localization zone, i.e.

Fig. 4. Response mode of a transversely loaded beam, (a) bending dominant deformation mode (H4); (b) shear hinge deformation

mode (H6); (c) shear wave propagation mode (H1).

2 According to the von-Mises yield condition, the linear hardening modulus in a pure shear test is given by Et=Eh/2(1+n )=Eh/3

when the material is incompressible (n=0.5), where Eh is determined from a uniaxial tensile test.
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Zn �
V

cp

and Zt �
T

e=cp

, �25a,b�

where cp=260 m/s and T�=e/cp=15.85 ms are the respective characteristic velocity and response time of
the particular beam with H=9.52 mm studied by Menkes and Opat (1973).

The ®nite-element simulations show that three cases are possible, i.e. (a) Zv<<1, or V<<cp; (b) Zv 0
o(1), or V0o(cp); (c) Zv > 1, or V> cp. These three cases correspond to a static or quasi-static process,
a dynamic plastic response process and a transient wave propagation process, respectively, as shown in
Figs. 4(a)±(c). However, two di�erent situations in both case (b) and case (c) are distinguished when Zt

Table 2

Numerical simulation data (H = 9.52 mm, B = 25.4 mm, L = 101.6 mm). Note: (a): bending mode (Zv<<1); (b): trapped shear

hinge (Zv < 1 and Zv 0 o (1)), in which (b1) and (b2) correspond to Zt < 1 and Zt > 1, respectively; (c): transient shear wave

propagation (Zv> 1), in which (c1) and (c2) correspond to Zt < 1 and Zt > 1, respectively

No. W (mm) T (ms) V (m/s) Zv Zt Type Note

H1 1.5 5 300 1.154 0.32 (c1)

H2 6.5 500 13 0.05 31.55 (a)

H3 3.0 50 60 0.23 3.16 (b2)

H4 5.0 150 33.33 0.13 9.46 (a)

H5 3.0 10 300 1.154 0.63 (c1)

H6 3.0 20 150 0.58 1.26 (b2)

H7 1.5 10 150 0.58 0.63 (b1)

H8 3.0 20 150 0.58 1.26 (b2) strain rate

H9 3.0 10 300 1.154 0.63 (c1)

H10 6.0 20 300 1.154 1.26 (c2) Fig. 11 (c)

H11 6.0 40 150 0.58 2.52 (b2)

H12 9.0 60 150 0.58 3.79 (b2)

H13 9.0 30 300 1.154 1.89 (c2) Fig. 11(d)

Fig. 5. Distributions of equivalent plastic strain in bending responses, (a) W=6.5 mm and T=500 ms (H2), the equivalent plastic

strain values are (1) 0.02, (2) 0.06, (3) 0.10, (4) 0.14, (5) 0.18, and (6) 0.22; (b) W=5 mm and T=150 ms (H4), the equivalent plas-

tic strain values are (1) 0.02, (2) 0.044, (3) 0.069, (4) 0.093, (5) 0.12, and (6) 0.14.
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R 1 (see (b1) and (c1) in Table 2) and Zt > 1 (see (b2) and (c2) in Table 2), which will be discussed in a
subsequent section.

3.3. Finite-element simulations

The three di�erent cases (a)±(c) in section 3.2 are simulated by the examples in Table 2 with several
loading rates and impact velocities.

3.3.1. Bending response when V<<cp
Two simulations are conducted with V<<cp=260 m/s. The parameters T = 500 ms and W = 6.5 mm

are used for the ®rst example, which gives V=13 m/s and V/cp=0.05. A second example with T= 150
ms and W = 5.0 mm gives V = 33.3 m/s and V/cp=0.128. The ®nal distributions of the equivalent
plastic strains for these two examples are shown in Fig. 5 (a) and (b), respectively. It is evident that both
beams have a typical bending response, as shown previously in Fig. 2(a) and 4(a). Thus, the response
mode when V<<cp is a bending dominant deformation.

The non-symmetrical distributions of the equivalent strains about the mid-plane of the beam are due

Fig. 6. Propagation of equivalent plastic strain for W = 3.0 mm and T = 20 ms (H6), the equivalent plastic strain values are (1)

0.01, (2) 0.058, (3) 0.11, (4) 0.15, and (5) 0.20, (a) at t=2.18 ms, (b) at t=10.47 ms, (c) at t=25.00 ms, and (d) at t=70.00 ms.
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to the in¯uence of the membrane force because the two ends of the beam are restrained in the
horizontal direction.

3.3.2. Plastic shear hinge formation when V0o(cp)
The propagation of equivalent plastic strains, which consists mainly of the transverse shear

component of the strain tensor, are shown in Fig. 6 for T= 20 ms and W= 3.0 mm with V= 150 m/s,
or V/cp=0.58. It is observed that there is a localised transverse shear zone near the loaded end. This
shear deformation is propagated at 240 m/s, approximately, up to a time of T�=15.85 ms according to
the ®rst three simulation results in Fig. 6. This speed is approaching the plastic shear wave speed,
cp=260 m/s, and, therefore, the propagation model proposed by Wang and Jones (1996) is adequate.
However, for times T> T�, the propagated shear deformations are trapped in a zone having a length, e
1 0.433H, as determined by the quasi-static analysis in section 2.3. Stress distributions in the beam are
complicated due to the re¯ections of stress waves on the upper and lower free surfaces and the clamped
ends. The propagation of the axial stress obtained by the ABAQUS simulation indicates the formation
of a bending mode at about one-third of the beam length from the impacted end of the beam, which is
probably responsible for preventing any further propagation of the shear deformation. Thus, stress wave
interactions are important for the formation of plastic shear and bending hinges. Similar observations
were made by Reid and Gui (1987) who used ABAQUS with beam elements to study the propagation
of a plastic bending hinge in a Parkes' cantilever beam. It was found that the e�ect of the re¯ection of
an elastic bending wave may lead to a `hinge arrest mechanism', which locks the plastic hinge at about
one-half of the cantilever beam span for a short period. The response characteristics of the beam studied
by Reid and Gui (1987) are di�erent from the present problem because shear and axial deformations,
which are important here, are not signi®cant in Parkes' problem. However, it is evident that stress wave
interactions have an important in¯uence on the formation of a plastic hinge. The stress wave e�ects
were examined by Yu and Jones (1989, 1997) for fully clamped beams subjected to a mass impact. The
interactions between wave dispersion and re¯ection lead to peak values of the bending moments, and
result in signi®cant plastic bending deformation regions, which explains the initial formation of the
plastic hinges. Yu et al. (1997) also examined the interaction between a plastic bending hinge and elastic
¯exural wave in a cantilever beam.

Many authors have estimated the transverse shear strain by assuming a uniform strain distribution
within a transverse shear hinge. In order to verify the validity of this assumption, Fig. 7 (a) gives the
plastic shear strain histories at di�erent locations along the length of a shear hinge where curves 1±9
correspond to the plastic shear strains in elements 296, 306, . . . 366 and 376 on the mid-plane shown in
Fig. 3. The size of each element is H/20 so that the ten elements cover the length 0.5H which is larger
than one-half the length of a shear hinge (0.433H ) according to the quasi-static analysis in section 2.3.
The shear hinge is completely established after around 16 ms according to Fig. 7(b). This is similar to
the time that a plastic shear wave travels one-half the length of a shear hinge, i.e. 0.43H/cp. The shear
strain distribution in the shear hinge is not uniform and consists of a main shear zone with nearly
constant shear strain in the centre of the shear hinge and a transition zone with decreasing shear strains
towards the end of the show hinge, as shown in Figs. 6 and 7(a).

It is interesting to examine the validity of the traditional method for calculating the transverse shear
strain in a shear hinge, i.e.

g � DW
e

, �26�

where g is the engineering shear strain and W is the relative transverse displacement across the shear
hinge (e ) between nodes 5049 and 5040 in Fig. 3. The calculations by ABAQUS in Fig. 7(b) give DW=
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1.55 (mm), so that Eq. (26) gives g=1.55/(0.433 � 9.52)=0.38. From Fig. 7(a), the maximum
engineering shear strain (ABAQUS always uses the engineering value) is about 0.393. Thus, g in Eq. (26)
provides a good estimate of the maximum engineering plastic strain in a shear hinge. A similar
conclusion is obtained from another simulation example, H3 in Table 2, with V/cp=0.231. The
calculated relative transverse displacement across the shear hinge is 0.447 mm, which gives g=0.447/
(0.433� 9.52)=0.11 from Eq. (26), and is very close to the calculated value gmax=0.103 from ABAQUS.

Fig. 7. (a) Plastic shear strain histories at di�erent locations along the shear hinge length in simulation H6, curves 1, 2, . . . . . . 9

correspond to elements 296, 306, . . . . . . 376 shown in Fig. 3; (b) relative displacement across the shear hinge length, e.

3 Normally, the shear strain in the element near to the boundary (element 386) is not accurate due to the in¯uence of the bound-

ary on the strain calculation. Therefore, the connecting element (element 376) is used to estimate the maximum shear strain.
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When the loading time is smaller than the characteristic time, T�=e/cp=15.85 ms, the transverse shear
deformation can only propagate a short distance before the loading ceases. This distance is smaller than
the shear hinge length obtained from a quasi-static method of analysis. Fig. 8(a)±(d) demonstrate four
di�erent cases with the same impact velocity V = 150 m/s corresponding to (a) W = 1.5 mm and T =
10 ms, (b) W= 3.0 mm and T= 20 ms, (c) W= 6.0 mm and T= 40 ms and (d) W= 9.0 mm and T=
60 ms. It is evident that the length of the localised shear zone in Fig. 8(a) is smaller than the predicted
shear hinge length, e. The relative transverse displacement across the shear hinge is DW 1 1.20 mm,
which gives g 1 1.20/(0.433 � 9.52)=0.29 according to Eq. (26). This value is smaller than gmax=0.38
from the ABAQUS simulation results. Therefore, plastic shear wave propagation e�ects must be
considered for T< T� even when V< cp.

Fig. 8. Deformation patterns of a beam with an imposed velocity of V= 150 m/s, (a) W=1.5 mm and T=10 ms (H7); (b) W=

3.0 mm and T=20 ms (H6); (c) W=6.0 mm and T=40 ms (H11); (d) W=9.0 mm and T=60 ms (H12).
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The maximum plastic shear strains for the simulations in Fig. 8(a)±(d) have an almost constant value
of 0.38, which implies that the maximum shear strain is determined mainly by the magnitude of the
impact velocity for a given beam.

3.3.3. Shear propagation when V> cp
For the loading parameters T = 5 ms and W = 1.5 mm, which give V = 300 m/s and V/cp=1.15,

Figs. 9 and 10 present results similar to Figs. 6 and 7. One important di�erence is that the transverse
shear deformations localize into a narrow zone which is smaller than the calculated shear hinge length e
= 0.433H. When the loading time T is smaller than T�=e/cp, the transverse shear deformations cannot
reach the distance, e, determined by a quasi-static method of analysis, before the energy input ceases, as
shown in Fig. 11(a) and (b). In this case, a quasi-static analysis cannot be used to predict a realistic
shear hinge length. Instead, wave propagation of the transverse shear disturbance must be considered as
suggested by Wang and Jones (1996). According to Fig. 10(b) and Eq. (26), the maximum shear strain
in the shear hinge length (e = 0.433H ) is 0.39, which is much smaller than the numerical calculated
maximum value of gmax=0.83 in Fig. 10(a) obtained using the ABAQUS simulations.

Fig. 9. Propagation of equivalent plastic strain for W=1.5 mm and T=5 ms with V=300 m/s (H1), the equivalent plastic strain

values are (1) 0.01, (2) 0.058, (3) 0.11, (4) 0.15, and (5) 0.20, (a) at t=0.22 ms, (b) at t=2.20 ms, (c) at t=4.61 ms, and (d) at t=

10.00 ms.
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When the loading time is longer than T�=e/cp, the shear deformations are not trapped within the
calculated shear hinge length and a large shear zone is observed, as shown in Fig. 11(c) and (d). The
propagation of shear deformations cannot be predicted by a shear wave theory for T > T� because a
bending mode is involved outside the shear domain region. However, this situation develops rarely in
practice because material failure occurs normally for high impact velocities, which prevents the input of
any more external impact energy for T> T�. Again, the maximum shear strains are similar for di�erent
loading parameters but having the same imposed velocity, where gmax are 0.833, 0.844, 0.844 and 0.850
for H6, H9, H10 and H13 in Table 2, respectively. This con®rms the observation made in section 3.3.2
that the imposed velocity is an important factor for determining the maximum shear strain.

Fig. 10. (a) Plastic shear and equivalent strain histories at di�erent locations along the shear hinge length in simulation H1, curves

1, 2, . . . . . . 9 correspond to elements 296, 306, . . . . . . 376 shown in Fig. 3; (b) relative displacement across the shear hinge length,

e.
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4. Discussion

The actual dynamic transverse loads, which act on structures, are more complicated than the idealized
case considered in the previous sections. Two typical dynamic loadings in impact engineering are mass
impact loadings and explosive pressure loads, which may produce a transverse shear localization at
either the periphery of an impacted area or at any hard-points, such as supports. The characteristic
velocities and loading times in these cases are determined from the initial impact velocities and input
energies. Within the early stage of the response, a compressive wave propagates from the top surface to

Fig. 11. Deformation patterns of a beam with an imposed velocity of V=300 m/s, (a) W=1.5 mm and T=5 ms (H1); (b) W=

3.0 mm and T=10 ms (H9); (c) W=6.0 mm and T=20 ms (H10); (d) W=9.0 mm and T=30 ms (H13).
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the bottom surface of a structural element and produces a transverse disturbance. When the impact
velocity is su�ciently high, considerable indentation and local failure may occur during this stage. The
interactions between the indentation/failure and shear propagation must be considered for a realistic
prediction of the behaviour. Several practical models have been developed by Awerbuch and Bodner
(1974) for this purpose and the perforated pro®les of the plate cross-section in Figs. 3 and 5 of
Awerbuch and Bodner (1974) are comparable with the deformation shape near the loading boundary
shown in Fig. 4(c) of the current simulation for a beam.

For intensive dynamic loading, the material properties may change signi®cantly, which can only be
simulated by a more complicated material model. Even within the dynamic plastic response range, strain

Fig. 12. (a) Shear strain histories with strain rate e�ects (W= 3.0 mm and T= 20 ms in H8), curves 1, 2, . . . . . . 9 correspond to

elements 296, 306, . . . . . . 376 shown in Fig. 3; (b) relative displacement across the length of a shear hinge when retaining strain

rate e�ects (H8).

Q.M. Li, N. Jones / International Journal of Solids and Structures 37 (2000) 6683±67046702



rate and temperature e�ects are important for medium to high speed loadings. An adiabatic shear band
may be initiated during the shear propagation period due to thermal softening of the material, which
may prevent further extension of the conventional shear zone. Instead, a more severe shear localization
with a band width around 10±100 mm may be formed and material fractures initiate within this band.
The band width is determined mainly by the material properties and is independent of the size of a
conventional shear hinge. This feature is similar to a shear hinge which is determined mainly by the
structural element properties, such as Q0 and M0 for a beam, and is independent of the size of the
structural element, e.g. the beam length.

In many cases, the temperature e�ect becomes important only after considerable plastic work has
been consumed by a structure, but, strain rate e�ects are always important for rate sensitive materials.
Therefore, the in¯uence of material strain rate sensitivity should be retained in analyses of transverse
shear propagation. Numerical simulations for the same beam without (H6) and with (H8) strain rate
e�ects were conducted. The Cowper±Symonds relationship given by Eq. (23) with D= 6500 (1/s) and p
= 4.0 was used to examine the in¯uence of strain rate e�ects for 6061-T6 aluminum alloy. It is found
that the magnitude of the transverse shear strain without considering strain rate e�ect (H6) is larger
than that when strain rate e�ects are considered (H8). Actually, the maximum shear strain is 0.38 for
simulation H6 when the strain rate e�ect is neglected, which is nearly double the value obtained for H8
when the in¯uence of material strain rate sensitivity is retained. These results imply that the stress state,
or the dynamic yield stress, is another important factor which in¯uences the magnitude of the maximum
shear strain in addition to the impact velocity.

The shear strain histories and the relative displacement across the length of a shear hinge in a strain
rate sensitive beam are shown in Fig. 12(a) and (b). The maximum shear strain from Eq. (26) and
Fig. 12(b) is 0.22, which is comparable with gmax=0.218 from the ABAQUS results in Fig. 12(a). Thus,
Eq. (26) appears to remain valid for strain rate sensitive materials.

Finally, it should be noted that the broad conclusions of this study for a beam might be applicable to
plates and cylindrical shells when subjected to large dynamic transverse loads due to the similarities
inherent in all transversely loaded structural elements.

5. Conclusions

A transverse shear hinge is an important concept in dynamic rigid, perfectly plastic analyses. The
geometrical size of a transverse shear hinge is obtained for beams, circular plates and cylindrical shells
using a quasi-static method of analysis. With the aid of dimensional analysis, the formation of a
transverse shear hinge in a beam is examined using ®nite-element simulations. It is found that quasi-
static predictions and the concept of a transverse shear hinge are valid when the impact velocity is the
same order as the plastic shear wave speed. When the impact velocity is much smaller than the plastic
shear speed, bending dominates the response. On the other hand, if the impact velocity is larger than the
plastic shear speed, then in-plane plastic shear wave propagation is important. Although the ®nite-
element simulation is based on an idealised beam problem, it re¯ects the general features of a transverse
shear hinge.
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